小编为你精心整理了28篇《平行四边形的面积教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《平行四边形的面积教学设计》相关的范文。
篇一:平行四边形的面积教学设计教材分析:
《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。
教学目标:
1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。
3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。
教学重难点:
教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。
教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
3块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
一、创境导入,激发兴趣
由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。
二、多元学习,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的`面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并在小组内交流。
3、汇报展示
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:
长方形的面积=长×宽
篇二:平行四边形的面积教学设计5、利用课件回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah
7、记忆公式
如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?
三、巩固练习,深化运用,
课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。
四、课堂总结,深化新知
最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
篇三:平行四边形的面积教学设计教学目标:
1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:
理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
教学难点:
理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
教学准备:
平行四边形卡片剪刀方格子
教学过程:
一、创设情境,激趣导入
师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?
学生汇报
师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢? ……此处隐藏48086个字……>
教学准备:
学生准备:平行四边形、剪刀
教师准备:课件、长方形、平行四边形、长方形活动框架
教学过程:
一、课前口算(课件出示)
第一列:7×8=____14÷7=____9×6=____125×8=____54÷6=____
第二列:32÷8=____25×4=____6×9=____16÷4=____0.5×7=____
第三列:32÷4=____7×5=____48÷6=____0.4×0=____12×4=____
【设计意图:表内乘除法是乘除法计算的基础,采用三人小组1号说第一列,2号第二列,3号第三列,一人说另外两人检查的方式进行口算,既能提升不断学生的口算能力,也培养了孩子相互检查和合作学习的习惯。】
二、回顾旧知、猜想导入
(一)回顾旧知
同学们,图形在我们生活中无处不在,前面我们也认识过很多平面图形。关于长方形,你知道哪些知识?平行四边形呢?
要求这个长方形的面积需要知道什么?(长和宽)怎么求长方形的面积?(长方形面积=长×宽)
【设计意图:考虑到学生对学过长方形、平行四边形的相关知识可能遗忘,所以通过回顾旧知,可以让学生把脑中储备的旧知激活,让学生的思维有一个缓冲,为学生下一步的猜测牵线搭桥,并对猜测的.验证提供途径。】
(二)猜想导入
请看大屏幕,工人叔叔在干什么?玻璃是什么形状?要求这块玻璃的面积就是求什么的面积?请你猜一猜平行四边形的面积跟什么有关?怎么计算平行四边形的面积?
学生猜测预设:
预设1:由长方形的面积公式,猜平行四边形的面积等于两邻边的乘积。
预设2:数方格。
预设3:将长方形转化成正方形。
【设计意图:由生活的问题“求玻璃的面积”转化成数学问题“求平行四边形的面积”,让学生感受到生活与生活是密不可分的,然后让学生带着猜测、思考和探究的欲望积极参与本节课接下来的学习。】
三、猜想验证、探索公式
(一)猜想验证
验证预设1:
师:平行四边形的面积等于两条邻边的乘积吗?请认真观察。
师出示平行四边形活动框架,并轻轻拉动框架。
师:你发现了什么?
生1:平行四边形的形状发生变化,面积也随着发生了变化,但是四条边的长度没变。
生2:平行四边形的面积不等于两条邻边的乘积。
师:看来,通过拉动平行四边形框架验证这个猜测是错误的。但我们依然表扬这位同学,他让我们知道了平行四边形的面积不等于两条邻边的乘积。
验证预设2:
课件出示方格纸上的一个平行四边形。
师:请同学们数一数这个平行四边形的面积?
生汇报结果。
师:对于数方格这种方法,你有什么想说的?
生1:有很多不是一整格,不好数,很麻烦。
生2:如果是一个很大的平行四边形,数起来更麻烦。
生3:虽然用数方格的方法能数出平行四边形的面积,但如果想知道一块平行四边形的菜地面积,怎么用数方格的方法?
师:看来,数方格的方法不仅麻烦,有时候也不能解决实际问题。那我们就按照刚才的同学提供的思路,看看长方形能不能转化成正方形。
验证预设3:
师:下面三人小组借助平行四边形纸片,想办法看看能将长方形能不能转化成正方形。
生活动,师巡视。
师:哪个小组来汇报。
生1:沿着平行四边形的高把图形剪开,把平行四边形分成一个直角三角形和一个直角梯形,将左边的三角形平移到右边,得到一个长方形。
生2:沿着平行四边形的高把图形剪开,把平行四边形分成两个直角梯形,将左边的平移到右边,得到一个长方形。
师:他们的剪法有什么相同的地方?
生:都是沿着平行四边形的高剪开,都拼成了一个长方形。
师:为什么都沿着平行四边形的高剪开?
生:长方形有四个直角,只有沿高剪开,拼时才能出现直角。
师:同学们太厉害了!只要沿着平行条高剪开后,通过平移就把这个平行四边形转化成长方形。
【设计意图:尊重学生的想法,并通过具体的操作验证学生的猜测和想法,让学生感受数学的严谨性以及转化的重要性。】
(二)探索公式
师:我们知道任意一个平行四边形都可以转化成长方形,又知道长方形的面积等于长乘宽,那么平行四边形与转化后的长方形有什么关系呢?
师:请同学们再次回顾刚才转化的过程,小组交流你们的想法。
生交流,师巡视。
师:谁来谁一说你们的想法?
生:在转化的过程中面积没有变。
生2:转化后长方形的长是平行四边形的底,长方形的宽是平行四边形的高。
生3:平行四边形的面积等于底乘高。
师:谁能完整的再说一遍。
师:小组内每人说一遍。
师:如果用S表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高。那么,平行四边形的面积公式:S=ah。
【设计意图:让学生通过具体操作,在小组合作交流中探究出平行四边形的面积公式,并获得积极的情感体验,积累活动经验。】
四、首尾呼应、解决问题
师:通过刚才的学习,我们知道了平行四边形的面积等于底乘高,我们看工人叔叔安装的这块玻璃,它的底是1.2米,高是0.8米,你能求出它的面积吗?写在你的本上。
生汇报:1.2×0.7=0.84(平方米)
答:玻璃的面积是0.84平方米。
五、巩固应用、拓展延伸
1.自主练习第1题。
在本上独立完成,然后全班交流,注意单位。
2.求平行四边形的面积。(课件出示)
可能性预设:
预设1:30×17.5=525(平方米)
预设2:20×17.5=350(平方米)
预设2的应对方案:在师生的交流中使学生认识到,平行四边形有两组底和高,在解决问题时,一定要注意底和高要对应。
3.(课后作业)小区要在一块长8米,宽6米的空地上建一个面积是30平方米的平行四边形观赏鱼池(底和高是整米数),如果你是设计师你如何设计?
【设计意图:练习题的设计层次分明,即关注知识,又关注灵活运用,在解决问题的过程中加深对平行四边形面积计算方法的理解,体会数学知识在日常生活中的实际应用价值。】
六、整理回顾、畅谈收获
通过本节课的学习,你收获了哪些知识?获得哪些学习方法?
板书设计:
篇二十八:数学《平行四边形的面积》教学设计长方形的面积=长×宽
1.2×0.7=0.84(平方米)
平行四边形的面积=底×高
答:玻璃的面积是0.84平方米。
文档为doc格式